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The major effects of health‑related 
quality of life on 5‑year survival 
prediction among lung cancer 
survivors: applications of machine 
learning
Jin‑ah Sim1,7, Young Ae Kim2,7, Ju Han Kim3, Jong Mog Lee4, Moon Soo Kim4, 
Young Mog Shim5, Jae Ill Zo5 & Young Ho Yun1,3,6*

The primary goal of this study was to evaluate the major roles of health-related quality of life (HRQOL) 
in a 5-year lung cancer survival prediction model using machine learning techniques (MLTs). The 
predictive performances of the models were compared with data from 809 survivors who underwent 
lung cancer surgery. Each of the modeling technique was applied to two feature sets: feature set 
1 included clinical and sociodemographic variables, and feature set 2 added HRQOL factors to the 
variables from feature set 1. One of each developed prediction model was trained with the decision 
tree (DT), logistic regression (LR), bagging, random forest (RF), and adaptive boosting (AdaBoost) 
methods, and then, the best algorithm for modeling was determined. The models’ performances 
were compared using fivefold cross-validation. For feature set 1, there were no significant differences 
in model accuracies (ranging from 0.647 to 0.713). Among the models in feature set 2, the AdaBoost 
and RF models outperformed the other prognostic models [area under the curve (AUC) = 0.850, 0.898, 
0.981, 0.966, and 0.949 for the DT, LR, bagging, RF and AdaBoost models, respectively] in the test set. 
Overall, 5-year disease-free lung cancer survival prediction models with MLTs that included HRQOL as 
well as clinical variables improved predictive performance.

Globally, lung cancer has been the most common cancer for several decades1. Due to advances in early detection 
and improved treatment strategies1,2, lung cancer mortality has decreased worldwide3, and Korean age-adjusted 
lung cancer mortality has decreased by 3.4% annually since 20124. With this increase in the number of cancer 
survivors, it has become important to classify these individuals into precise prognostic groups and provide them 
with appropriate information for better follow-up planning and personalized self-management.5

Many lung cancer survivors have reported that they had diverse health difficulties2,6, and their health func-
tion or symptom burden was more severe than that of others6. In fact, many recent studies have suggested that 
patient-reported outcomes (PROs), such as health-related quality of life (HRQOL) or clinical data, can provide 
clear prognostic information7,8. In our previous study of disease-free lung cancer survivors9,10, we found that 
several HRQOL variables showed prognostic potential, and thus, HRQOL or lifestyle factors can be used to 
identify patients who could benefit from a specific intervention. Therefore, we aimed to predict lung cancer 
survivors’ disease-free 5-year survival after primary treatment for lung cancer ended, i.e., the patient survived 
without any signs or symptoms of that cancer, such as local or regional relapses of the tumor or development of 
distant metastases, using a combination of sociodemographic, clinical and HRQOL variables.
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In general, statistical approaches focus on inferring the characteristics of a population from sample data11, 
while machine learning techniques (MLTs) may focus on predicting future values by analyzing the given data 
and have the potential to maximize the prediction accuracy of large clinical data sets12. In addition, MLTs are 
more suitable for developing prediction models with dozens of parameters when more prognostic variables are 
included, because standard statistics do not generally work in this situation13. However, although a variety of 
prediction models based on MLTs for cancer mortality have been developed and utilized in clinical settings14,15, 
there have been fewer studies regarding the development of MLT-based lung cancer survival prediction models 
using HRQOL factors.

Here, we proved that the machine learning model including HRQOL data in addition to demographic and 
clinical parameters was more predictive than existing models that include only demographic and clinical char-
acteristics. We compared the performance of five MLTs by applying each of them to feature set 1 (in which the 
model considers only demographic and clinical characteristics) and feature set 2 (in which HRQOL factors are 
added to the variables from feature set 1). The five MLTs used are as follows: decision tree (DT), logistic regres-
sion (LR), bagging, random forest (RF), and adaptive boosting (AdaBoost).

Results
Data proportions after data up‑sampling and splitting.  If the data were well sampled and solved the 
imbalance problem well, there should be no statistically significant differences in the final comparison of soci-
odemographic and clinical variables between the deceased and living groups based on the up-sampled data. The 
final comparison of sociodemographic and clinical variables between the deceased and living groups based on 
the up-sampled data is shown in Table 1. No statistically significant differences between the deceased and living 
groups were found after balancing. After missing data imputation and data balancing, the data were split into a 
training set (80%, n = 1,140) and a validation set (20%, n = 286). There were no significant differences between 
the training and validation sets.

Importance of the prognostic factors included in the developed prediction model.  The impor-
tance of the selected prognostic variables was compared with MLT Table  2. The calculated mutual variable 
importance was normalized, and the sum ranged between 0 and 100%. In feature set 1, cancer stage (II–III) 
was identified as the most important factor in the DT, bagging, and AdaBoost models. Age was identified as the 
most important factor in the LR and RF models. In feature set 2, appreciation of life was identified as the most 
important factor in the DT model, while cancer stage and body mass index (BMI) (kg/m2) before the operation 
were most important in the bagging model, and sex and anxiety were most important in the RF model. Regional 
lymph node metastasis and dyspnea were the most important predictors in the AdaBoost model, and personal 
strength was the most important predictor in the LR model.

Comparisons of the MLT‑based models’ performances.  Based on the accuracy of the prediction 
model with cross-validation, each MLT-based prediction model’s performance was measured. The parameters 
used in each lung cancer survival prediction model are summarized in Table 3, including the validation method 
with N folds, the training and testing set sizes, the tuning parameter, the performances of the classifiers on the 
testing set, and the validation results from the fivefold cross-validation dataset using two different feature sets. 
Among the overall model performances for feature set 1, there were no significant differences in the model accu-
racies (ranging from 0.647 to 0.713),the LR model had the lowest accuracy, and the RF model had the highest 
accuracy in feature set 2 (0.746 and 0.916, respectively). Among the models for the fivefold cross-validation sets, 
the test accuracy of the AdaBoost model exceeded those of the other prognostic models (0.745, 0.825, 0.773, 
0.941, and 0.948 for the DT, LR, bagging, RF and AdaBoost models, respectively) in feature set 2.

The receiver operating characteristic (ROC) curves for each feature set of the 5 MLT models based on the 
cross-validation set that were used to calculate the area under the curve (AUC) were also drawn Fig. 1. Among 
the models based on feature set 2, the bagging model outperformed the other prognostic models (AUC = 0.850, 
0.898, 0.981, 0.966, and 0.949 for the DT, LR, bagging, RF and AdaBoost models, respectively) in fivefold cross-
validation. Figure 2 shows the prediction values on the x-axis, and the H-statistic is plotted as five groups in the 
calibration graphs from the testing set. Four of the models’ calibration plots aligned well with the diagonal lines, 
although that of the AdaBoost model did not. 

Methods
Data acquisition.  We first identified 2,049 participants aged over 18 years who underwent primary lung 
cancer surgery between 2001 and 2006 from the Samsung Medical Center or the National Cancer Center in 
South Korea cancer registries16. The participants were eligible if they (1) were diagnosed with lung cancer (stage 
0–III), (2) were treated with curative surgery, and (3) had no evidence of a history of other cancer. We contacted 
eligible subjects by telephone, and those who agreed to participate were surveyed with the help of our staff at 
home or in the clinic. In this analysis, we also excluded subjects whose cancer had recurred at that time. As 
video-assisted thoracic surgery was not often performed from 2001 to 2006, we also excluded patients who 
received it. Thus, all patients in this study underwent pulmonary resection through open thoracotomy. A total of 
1,633 survivors were pathologically diagnosed as disease-free and did not receive any treatment while the study 
was in progress,906 survivors completed the self-reported survey. After excluding patients with recurring cancer 
and those for whom the questionnaire was missing, 836 lung cancer survivors were initially included.

Lung cancer patients who did not have evidence of recurrence or death were censored at the last follow-up 
before the target date. In this study, a regular follow-up was undertaken for each patient based on each hospital’s 
registry after the completion of treatment. If a patient died during the follow-up, the family caregivers were 
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asked the date of death. Among 836 patients, we excluded 27 subjects whose survival status was censored by 
December 31, 2011. In total, 809 patients were included in this study. Ethics approval was obtained from the 
Institutional Review Boards of the National Cancer Center and Samsung Medical Center. The patients eligible 
to participate were asked to provide informed consent to the staff. Written informed consent was obtained from 
all the participants before the study. The current study inclusion followed the ethical standards declared in the 
1964 Declaration of Helsinki and its later amended version.

Phased feature sets with selected prognostic factors.  The study participants’ data included clinical 
information regarding the primary cancer site, date of cancer diagnosis, cancer stage, treatment type, and other 
clinical characteristics for all lung cancer survivors. Measuring patients’ symptoms or PROs with a self-reported 

Table 1.   Comparison of the baseline characteristics between the living and deceased groups with up-sampled 
data. OP, operation; RT, radiation therapy; CT, chemotherapy; FEV1/FVC, forced expiratory volume 1/forced 
vital capacity.

Variable

Balanced up-sampled data

Living (N = 713) Deceased (N = 713)

p-valuen % n %

Age (years) 62.51 ± 8.55 66.21 ± 8.31 < 0.001

< 65 393 63.3 228 36.7
< 0.001

≥ 65 320 39.8 485 60.2

Sex

Female 177 69.4 78 30.6
< 0.001

Male 537 45.8 635 54.2

Monthly income (USD)

≥ 3,000 207 69.5 91 30.5
< 0.001

< 3,000 506 44.9 622 55.1

Education

≥ High school degree 185 56.4 143 43.6
0.01

< High school degree 528 48.1 570 51.9

Currently married

Yes 655 50 656 50
0.92

No 58 50.4 57 49.6

FEV1/FVC 72.55 ± 15.11 65.77 ± 10.62 < 0.001

(FEV1/FVC)*100 ≥ 0.7 454 61.7 282 38.3
< 0.001

(FEV1/FVC)*100 < 0.7 259 37.5 431 62.5

Local tumor invasion

No 253 62.3 153 37.7
< 0.001

Yes 460 45.1 560 54.9

Regional lymph node metastasis

No 508 53.2 446 46.8
< 0.001

Yes 205 43.4 267 56.6

Stage

Stage 0–I 464 56.9 352 43.1
< 0.001

Stage II–III 249 40.8 361 59.2

Recurrence

No 630 62.8 373 37.2
< 0.001

Yes 83 19.6 340 80.4

Number of comorbidities

0 320 49 333 51
0.49

≥ 1 393 50.8 380 49.2

Treatment type

OP 435 51.7 417 48.6

< 0.001
OP + RT 41 37.6 68 62.4

OP + CT 193 53.6 167 46.4

OP + CT + RT 44 40 66 60

Time since diagnosis 2.93 ± 1.59 2.983 ± 1.68 0.29

≥ 3 years 307 53 272 47
0.06

< 3 years 406 47.9 441 52.1
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questionnaire has high validity because asking people directly allows us to reliably obtain their symptom status, 
and the results can be replicated. Therefore, we collected HRQOL data as well among disease-free lung cancer 
survivors who were treated with primary lung cancer surgery and survived without cancer recurrence for more 
than one year through a self-reported questionnaire. Each participant completed the survey including important 
lung cancer survivorship issues such as HRQOL, anxiety, depression, and posttraumatic growth.

To increase the robustness and validity of a model during the process of prediction modeling, the selection 
of candidate predictors is important. Final candidate variables that met both the literature review evidence level 
and statistical significance based on univariate analyses from a previous study16 were selected. (Supplementary 
Table 1). The variables included demographics (age and sex), socioeconomic status (marital status, educational 
level, and monthly family income), and past medical history (cancer stage, local invasion of tumor, regional 
lymph node metastasis, recurrence, comorbidities, treatment type, and time since diagnosis). In addition, lifestyle 
factors such as BMI and metabolic equivalents of task (MET)-hours per week for physical activity (PA) were 
considered. For HRQOL assessment, the European Organization for Research and Treatment of Cancer Quality 
of Life Questionnaire Core 30 (EORTC QLQ-C30)17, the Hospital Anxiety and Depression Scale (HADS)18, and 
the Posttraumatic Growth Inventory (PTGI) were also selected.

In our model development process, we also calculated a variance inflation factor (VIF) to detect multicol-
linearity (with a criterion of VIF score greater than 10) in our machine learning models. However, in our data, 
there were no variables with scores greater than 5, which indicates high correlation in the model; thus, we did 
not exclude any additional variables from our final candidate variables. In addition, because recurrence was also 
regarded as an outcome variable, we did not include that variable in the modeling process. For final model con-
struction, we grouped the candidate prognostic factors into two feature sets: (1) sociodemographic and clinical 
factors and (2) a combination of PROs and lifestyle factors added to the variables from feature set 1.

We defined the endpoint as the fifth year from the date of survey completion after primary treatment for 
lung cancer ended or the date of any cause of death. To obtain the date of overall survival (OS) after survey 
completion, we used the National Statistical Office death database linkage through December 31, 2011, as an 
outcome measure of any cause of death. During the follow-up, we identified 96 deaths (11.9%) and 713 (89.1%) 
survivals among the 809 subjects. The study design and process is shown in Fig. 3, and the study flow is shown 
in Supplementary Figure 1.

Table 2.   The normalized importance scores of prognostic variables for each of the five MLTs. NS, 
nonsignificant; BMI, body mass index; HRQOL, health-related quality of life; DT, decision tree; RF, random 
forest; LR, logistic regression. *LR variable selection using stepwise feature selection with a 5% significance 
level. The most important variable in the top 20% from each model are highlighted in bold font.

Domain Variable

Feature sets

Feature set 1: sociodemographic and clinical variables Feature set 2: PRO variables added to feature set 1

Normalized variable importance (%) Normalized variable importance (%)

Model Model Model Model

Model LR*

Model Model Model Model

Model LR*DT Bagging RF AdaBoost DT Bagging RF AdaBoost

Clinical factors

Cancer stage II–III 24.36 20.06 19.39 23.57 23.44 9.78 7.49 6.06 6.60 11.40

Local invasion of tumor 8.90 14.34 14.28 10.66 12.50 8.20 6.31 5.58 3.26 NS

Regional lymph node 
metastasis 23.71 10.25 10.42 9.13 NS 8.59 6.20 6.42 7.58 NS

Sociodemographic factors

Low household income 
(< 3,000$) 13.82 18.46 16.00 14.26 20.49 4.93 5.33 5.29 5.60 5.14

Age over 65 years 20.45 19.87 21.87 23.19 26.75 6.04 6.28 7.40 7.02 11.61

Male 8.76 17.01 18.03 19.19 24.84 5.90 5.70 7.61 6.96 11.36

HRQOL factors

BMI (kg/m2) before the opera-
tion (≥ 23. 5) 5.91 7.38 6.95 6.55 10.09

Anxiety 3.34 5.49 7.12 6.28 7.04

Depression 3.59 6.37 6.60 6.36 4.46

Poor physical functioning 1.74 2.36 1.74 1.48 6.47

Role functioning 1.64 1.73 1.53 2.14 3.54

Poor dyspnea 5.47 5.89 6.59 7.51 3.82

Poor appetite loss 3.53 4.24 3.35 4.44 NS

Poor diarrhea 1.95 2.64 2.10 2.78 NS

Poor lung cancer-specific 
cough 3.00 4.27 3.98 4.28 NS

Poor pain in chest 3.36 4.41 4.34 3.88 NS

Low new possibility 5.93 5.26 4.88 3.69 7.69

Low personal strength 6.62 5.45 5.56 6.11 12.23

Low appreciation of life 10.48 7.21 6.89 7.47 5.19
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Table 3.   Model comparisons based on the five machine leaning techniques. DT, decision tree; RF, random 
forest; LR, logistic regression. Feature set 1 includes sociodemographic and clinical variables. Feature set 2 
includes PRO variables and the variables included in feature set 1.

Feature set

Machine 
learning 
algorithm

Validation 
method N folds Training set size Testing set size

Training 
accuracy

Testing 
accuracy

1

DT Holdout sam-
pling 1,140 286 0.668 0.703

DT Cross-validation 5 912 286 0.625 0.692

LR Holdout sam-
pling 1,140 286 0.663 0.647

LR Cross-validation 5 912 286 0.657 0.632

Bagging Holdout sam-
pling 1,140 286 0.680 0.710

Bagging Cross-validation 5 912 286 0.655 0.706

RF Holdout sam-
pling 1,140 286 0.675 0.713

RF Cross-validation 5 912 286 0.675 0.692

AdaBoost Holdout sam-
pling 1,140 286 0.668 0.696

Real AdaBoost Cross-validation 5 912 286 0.642 0.713

2

DT Holdout sam-
pling 1,140 286 0.780 0.762

DT Cross-validation 5 912 286 0.758 0.745

LR Holdout sam-
pling 1,140 286 0.791 0.746

LR Cross-validation 5 912 286 0.814 0.825

Bagging Holdout sam-
pling 1,140 286 0.976 0.930

Bagging Cross-validation 5 912 286 0.794 0.776

RF Holdout sam-
pling 1,140 286 0.949 0.916

RF Cross-validation 5 912 286 0.918 0.941

AdaBoost Holdout sam-
pling 1,140 286 0.943 0.878

Real AdaBoost Cross-validation 5 912 286 0.932 0.948

Figure 1.   Comparison of ROC curves for the five MLT-based lung cancer models using the cross-validation 
test set. DT, decision tree; RF, random forest; Boost, AdaBoost; LR, logistic regression. (A) Model from feature 
set 1, (B) Model from feature set 2.
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Figure 2.   Calibration plots for each MLT-based lung cancer model at five risk levels using the cross-validation 
test set. DT, decision tree; RF, random forest; LR, logistic regression.
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Statistical analyses.  Data preprocessing.  Most machine learning algorithms only induce knowledge from 
the given data, the quality of the extracted knowledge can be determined by the quality of the background data19. 
Therefore, we first attempted to impute missing values based on important information available in the data 
set. Although several methodologies are used to treat missing values, we applied the k-nearest neighbor (KNN) 
algorithm to estimate and substitute our missing data. The KNN algorithm is useful because it can predict both 
binary and continuous features together. Prior to imputing the missing values, we first investigated the missing 
numbers of each variable. Then, using the R package “DMwR” and the function “Knn Imputation”, we replaced 
and imputed the weighted average numbers of the nearest 5 neighbors (k = 5) with missing HRQOL values in 
our algorithm. The “before” and “after” missing values plotting are shown in the Supplementary Figure 2. The 
red points are the proportion of missing values, and we could observe that after KNN imputation, there were no 
more missing values in this data.

Then, to maximize the differences in prognostic strength of the HRQOL scores, we dichotomized each scale 
of the EORTC QLQ-C30 and EORTC QLQ-LC13 based on the score for the problematic group to investigate 
clinically meaningful differences: ≤ 33 on a scale of 0–100 for global QOL or functioning scale, and > 66 for 
symptom scale.16,20 In addition, we used the HADS dichotomized with a cut-off point of 8 (a borderline case of 
anxiety or depression) as the outcome measure.21 For PTGI, we dichotomized each variable according to the 
standardized manual22.

In the machine learning classification, important differences in proportions cannot show accurate predic-
tions but also can lead to misleading results. Therefore, in order to make them allowable in real clinical settings, 
we had to deal with unbalanced problems when the value of finding a few ‘deceased’ classes were much higher 
than finding a majority. For this preprocessing, we used oversampling to reduce the error costs for the imbal-
anced data23, and all our study results were based on oversampling. The imbalance in the distribution fails most 
algorithms from finding a proper solution. The number of ‘deceased’ and ‘living’ cases after oversampling was 
the equivalent of 713 ‘deceased’ (50%) and ‘living’ (50%) cases. Then, the holdout method was used to randomly 
split the data sample into two mutually exclusive training (80%) and testing (20%) sets. The training set was 
utilized to generate the prediction models, and the remaining data were employed as a testing set to estimate 
the models’ predictive performances.

Machine learning algorithms.  Five supervised MLT-based classification models were trained to build each mul-
tivariable model to predict the 5-year survival rates for Korean lung cancer long-term survivors in the training 
set. DT, LR, RF and ensemble learning techniques such as bagging or AdaBoost were selected for the predictive 
feature selection process. The performances of the derived predictive models based on MLTs were internally 
validated by fivefold cross-validation.

Figure 3.   Study hypothesis and process.
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Individual model learners.  The DT and LR models were used for individual model learning. The main com-
ponents of a DT model are nodes and branches, and the most important steps in building a model are splitting, 
stopping, and pruning24. In splitting, the purity of the resultant child nodes is used to choose between different 
potential input variables25,26. A well-classified prediction model shows a higher information gain, and the split-
ting procedure continues until the stopping criteria are met. Then, we pruned the training set at a point that 
improved the accuracy of the overall classification and increased the validation error. Each pruning step of the 
“cp” model can be calculated and plotted as a figure. Finally, DT models from the candidate feature set were 
developed.

LR is based on a logistic function that estimates the regression equation for a binary (0/1) dependent variable 
(classification problem). The value of the logit function can be inversely multiplied by the probability of suc-
cess for the dependent variable so that the survival forecast can be applied to the classification problem. There 
is a growing perception that simultaneous evaluation of multiple exposures can reduce false-positive findings 
through several selection methods27. Therefore, we used stepwise selection for the LR model to select the most 
informative variables. The variable selection was performed in both directions, adding independent variables 
(forward) and removing previously added variables that were no longer influential (backward). In this stepwise 
selection process, a sequence of models starting with the null model and ending with the full model was derived. 
A 5% significance level was chosen as a threshold for the inclusion of a model variable. In this process, we used 
the generalized linear model (GLM) library from R-3.5.2.

Ensemble feature learners.  Ensemble learners such as RF, bagging and adaptive boosting were utilized. Ensem-
ble methods classify data by combining the results of multiple learners to improve classification accuracy by 
combining predictions from multiple classifiers. Bagging is a technique for generating a large number of training 
sets by resampling the given learning data with replacement28. With bagging, after generating multiple boot-
strap samples, several predictive models are trained for each sample set, and then, the results of each model are 
combined and predicted. The RF model is a model that adds a random subspace to the bagging29. The difference 
between a RF model and bagging is that randomly, after choosing ‘m’ variables from among all the variables, 
the optimal classifier is found by using the ‘m’ selected variables. Finally, the AdaBoost model combines several 
weak learning algorithms to create a good classification model30. The AdaBoost model sequentially trains the 
classifiers to complement the weak points of the previous classifier. The R packages caret, randomForest, ipred, 
and adabag were used for ensemble learning.

Cross‑validation.  Compared to other models, models built with ensemble techniques are less likely to be over-
fitted, but it is still something to avoid. Tuning model parameters is one method to prevent overfitting, but it is 
not the only one. Training features are more likely to lead to overfitting than the model parameters, especially 
in ensemble learning. Therefore, having a reliable method to check the developed model for overfitting is more 
important. The choice for the best model based on the k-fold cross-validation results will lead to a model that 
is not overfitted, which is not necessarily the case for other issues, such as the out-of-bag error. The classifiers of 
each of the 10 models were trained and evaluated by fivefold cross-validation through the caret package in R.

Model discrimination and calibration.  The training and test performance of the MLT algorithms were com-
pared with the model accuracy, which is the proportion of correctly classified samples among the total data. 
Each predictive performance from the fivefold cross-validation was assessed according to the AUC. The AUCs 
and 95% confidence intervals (CIs) were calculated to compare the performances of all the proposed models 
(10 MLT models: 5 from set 1 and 5 from set 2). The normalized variable importance method (VIM)31 was used 
to determine the importance of explanatory prognostic variables in each of the 10 prediction models. Finally, 
to estimate the clinical discriminatory capacity of our fivefold cross-validated data sets, we divided the patients 
into 5 subgroups according to the calculated predictive scores and compared the predictive survival rates to the 
real-world of survival rates.

Discussion
In this study, we demonstrated the major effects of HRQOL measurements in predicting survival among patients 
with disease-free lung cancer employing MLT ensemble learners. We also suggested that MLT-based survival pre-
diction models could be used to assist conventional tools in predicting disease-free survivors’ clinical outcomes 
for lung cancer32 and monitoring their medical status instead of traditional prediction models with individual 
classification learner-based prediction features16,33. Therefore, we first developed 10 models (5 constructed from 
only clinical and sociodemographic variables and 5 constructed from clinical or sociodemographic variables 
and HRQOL data) based on five MLT models (individual learners: DT and LR,ensemble learners: RF, bagging, 
and AdaBoost) and then compared and validated their prognostic accuracies. Finally, each of the five models 
based on feature set 2 showed moderately good discrimination and well-calibrated performance compared to 
the models constructed from only clinical and sociodemographic variables.

Ensemble learning methods showed significantly greater model accuracies (more than 90%) than others 
in terms of AUC. These machine learning-based lung cancer survival prediction models are the first models 
developed with not only clinical or sociodemographic factors but also integration of information from multiple 
factors, such as HRQOL factors combined with clinical factors, ensuring better model performance in terms 
of both discrimination and calibration and even greater predictive ability than other machine learning models. 
Among the various MLTs, the RF and AdaBoost models proved superior to the other algorithms.

There are some possible explanations for the findings of this study. First, lung cancer survivors’ HRQOL plays 
a key role in survival in conjunction with assessments of clinical outcomes, including those based on MLTs. From 
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systematic reviews, we found that there were impressive numbers of studies that showed a positive association 
between HRQOL and cancer survival. Based on this theoretical background, we constructed a new feature set, 
which included both clinical variables and HRQOL factors, that quantified good predictive accuracy in our data 
with five MLTs (DT, LR, bagging, AdaBoost, and RF). From the diverse MLT features, dyspnea, appreciation 
of life, BMI, anxiety and depression were selected as important variables in addition to cancer stage and sex. 
Additionally, it is possible that physical function34–37, dyspnea16,38–42, fatigue34,36,40,43, cough40, anxiety16,41 and 
depression16,41,42 are strong prognostic factors for survival in lung cancer patients after treatment39,44. Posttrau-
matic growth factors also have good prognostic value16.

Although biomedical or clinical parameters are generally known as the first factors with prognostic value45, 
HRQOL parameters have been regarded as additional values in predicting survival.9,34,39 However, even if we 
cannot change the clinical factors, HRQOL and lifestyle factors can be modified, therefore, we suggested HRQOL 
parameters as major effects to predict lung cancer survival. Better lung cancer prognostic indices based on both 
clinical and HRQOL factors need to be developed, and individual assessment algorithms for the prognosis of 
survivors are essential, guiding the clinical decision-making system to provide more information about their 
care based on MLTs. These HRQOL findings may indicate disease progression or recurrence that a physical 
examination by clinicians, a tumor marker evaluation, and imaging studies could not detect.7

In this study, MLTs were identified as having better predictive capabilities in clinical data sets than the 
traditional approach.12 Additionally, new ensemble learning-based prediction algorithms were more accurate 
than other MLTs. Although MLTs have been widely used to analyze gene expression data studies46,47 or medical 
image prediction analyses48, the studies that have explored MLTs in clinical settings are not sufficient, especially 
with respect to HRQOL. Our approach offers superior performance compared to previous machine learning 
approaches in predicting cancer survival. In addition, this approach could be used to better stratify lung cancer 
survivors in future clinical trials of cancer,improving the interpretation of study outcomes or helping identify 
critical areas could help in the selection of key endpoints for future clinical trials49.

Despite the superior performances of machine learning algorithms, it has been rather limited to use in routine 
clinical practices because such algorithms cannot be easily calculated with a traditional calculator. DT pruning 
and LR may produce predictive models with interpretable structures. RF and ensemble learning techniques, 
such as bagging or AdaBoost, are “black box” models50–52, where the function that links the response to the 
predictive variables is too opaque to use in daily clinical practice. One important advantage of the RF model is 
that the computational complexity inherent in support-vector machines (SVMs) can be reduced via quadratic 
optimization. Therefore, for convenience of use in clinical settings, developing a comprehensive digital-based 
self-management program by including a prediction model can provide more information and help survivors’ 
decisional support53.

However, our study has several limitations. First, there could be overfitting due to oversampling. It is obvi-
ous that the characteristics of the groups are clear, and it is not necessary to perform sampling. Since our data 
were imbalanced, which affects classification performance, it was necessary to balance the classes by sampling. 
When a classifier is correctly sampled, the classifier’s performance can be improved through oversampling. If 
the information in the existing data is lost or distorted during sampling, the learned algorithm does not properly 
reflect the characteristics of the original data. Therefore, data balancing using SMOTE-NC (non-continuous) to 
simulate the actual data, including noise that reflects the distribution of the existing data, should be employed 
in future studies. Second, MLTs that can be adapted to effectively handle survival data should be investigated11. 
The MLTs that we applied to this study cannot accurately predict the time of an event occurrence, and thus, we 
could not directly compare them with Cox-based prediction models. Previously, we performed the same process 
(using original imbalanced data) using Cox proportional hazard regression models, and the prediction model 
using HRQOL data in addition to clinical and sociodemographic variables was significantly better in terms of 
C-statistics (Supplementary Table 2). Therefore, including HRQOL with clinical variables together improved pre-
dictive performance in both traditional statistical analysis and machine learning techniques as well. Even though, 
because MLT didn’t consider the time of event, the cox-based model cannot be compared on the same lines. To 
handle survival problems with MLT, effective algorithms incorporate both statistical methods and MLT, such as 
survival trees54, random survival forests55, and bagging survival trees28. In addition, the participants were asked 
at different time intervals relative to the time of their diagnosis. Thus, at the fifth year from the date of survey 
completion after lung cancer surgery, we adjusted for this time difference by using a covariable that indicates a 
time since diagnosis. We suggest that an assessment of HRQOL data and lung cancer prediction models based 
on prognostic factors should be incorporated into routine clinical oncology practice, and further studies, such as 
randomized controlled trials, should be conducted. Although data from the study suggested that models adding 
HRQOL data were more accurate, this result should be validated in a wider population. Finally, due to a lack of 
other cohort sets including PROs among Korean lung cancer survivors, external validation was not conducted. 
Instead of an external validation set, the entire data set was randomly split to reduce the overfitting in the model 
then to produce a reliable estimate of the performance of the lung cancer survival model6. Future studies should 
validate the modeling process with other lung cancer cohort data including PROs.

The current study suggests that socio-clinical variables and HRQOL data can be applied to ensemble MLT 
algorithms (particularly the RF and AdaBoost algorithms) to predict disease-free lung cancer survival with bet-
ter predictive performances than models using socioclinical variables only. Most importantly, including both 
HRQOL and lifestyle factors in a lung cancer survival prediction process with the RF model will provide patients 
with more accurate information and lower their decisional conflicts. Because cancer survivors need monitoring 
of multidimensional health-related problems56, the provision of appropriate information through a prediction 
model is important for better follow-up planning. The improved accuracy of MLT for lung cancer survival pre-
diction can help clinicians and survivors make more clinically meaningful decisions about posttreatment care 
plans and their support in cancer care.
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